Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus

نویسندگان

  • Yanjun Sun
  • Steven F. Grieco
  • Todd C. Holmes
  • Xiangmin Xu
چکیده

Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through "back-projection" pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonrandom local circuits in the dentate gyrus.

The dentate hilus has been extensively studied in relation to its potential role in memory and in temporal lobe epilepsy. Little is known, however, about the synapses formed between the two major cell types in this region, glutamatergic mossy cells and hilar interneurons, or the organization of local circuits involving these cells. Using triple and quadruple simultaneous intracellular recording...

متن کامل

Endocannabinoid-mediated depolarization-induced suppression of inhibition in hilar mossy cells of the rat dentate gyrus.

Hilar mossy cells represent a unique population of local circuit neurons in the hippocampus and dentate gyrus. Here we use electrophysiological techniques in acute preparations of hippocampal slices to demonstrate that depolarization of a single hilar mossy cell can produce robust inhibition of local GABAergic afferents. This depolarization-induced suppression of inhibition (DSI) can be observe...

متن کامل

Hilar mossy cell circuitry controlling dentate granule cell excitability

Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has part...

متن کامل

Presynaptic inhibition of excitatory afferents to hilar mossy cells.

The hippocampus contains one very strong recurrent excitatory network formed by associational connections between CA3 pyramidal cells and another that depends largely on a disynaptic excitatory pathway between dentate granule cells. The recurrent excitatory network in CA3 has long been considered a possible location of autoassociative memory storage, whereas changes in the level and arrangement...

متن کامل

Hot spots light up the recurrent excitation hypothesis of temporal lobe epilepsy.

Commentary Development of acquired temporal lobe epilepsy (TLE) is accompanied by selective cell loss and reorganization of excitatory synaptic circuits in key brain regions. Of particular research focus, the axons of granule cells in the dentate gyrus (i.e., mossy fibers) have long been known to sprout collaterals and form new excitatory synapses with other granule cells after an epileptogenic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017